导数的基本公式
$C\prime=0$ (c为任意常数)
$(x^\alpha)\prime=\alpha x^{\alpha-1}$
$a^x=a^x \ln{a}$
$(e^x)\prime=e^x$
$(\log_ax)\prime=\frac{1}{x \ln a}$
$(\ln x)\prime=\frac{1}{x}$
$(\sin x)\prime=\cos x$
$(\cos x)\prime=-\sin x$
$(\tan x)\prime=\sec^2 x$
$(\cot x)\prime=-\csc^2 x$
$(\sec x)\prime=\sec x\tan x$
$(\csc x)\prime=-\csc x\cot x$
$(\arcsin x)\prime=\frac{1}{\sqrt{1-x^2}}$
$(\arccos x)\prime=\frac{-1}{\sqrt{1-x^2}}$
$(\arctan x)\prime=\frac{1}{1+x^2}$
$(arccot x)\prime=\frac{-1}{1+x^2}$
导数的四则运算
$\bigg(u(x)+v(x)\bigg)\prime=u\prime(x)+v\prime(x)$
$\bigg(u(x)-v(x)\bigg)\prime=u\prime(x)-v\prime(x)$
$\bigg(u(x)v(x)\bigg)\prime=u(x)v\prime(x)+u\prime(x)v(x)$
$\bigg(\frac{v(x)}{u(x)}\bigg)\prime=\frac{u(x)v\prime(x)-u\prime(x)v(x)}{[u(x)]^2}$